The order of energy required to remove electron is as follows—

 σ electrons > non-conjugated π > conjugated π > non bonding or lone pair of electrons.

Isotope patterns for -Cl , -Br and S

Elements	Isotope	Relative Abundance	Isotope	Relative Abundance	Isotope	Relative Abundance
Carbon	¹² C	100	¹³ C	1.11	¹⁴ C	1 × 10 ⁻¹
Hydrogen	^{1}H	100	² H	0.016		
Nitrogen	¹⁴ N	100	¹⁵ N	0.38		
Oxygen	^{16}O	100	^{17}O	0.04	¹⁸ O	0.2
Fluorine	¹⁹ F	100				
Silicon	²⁸ Si	100	²⁹ Si	5.1	³⁰ Si	3.35
Phosphorus	³¹ P	100				
Sulfur	³² S	100	33S	0.78	³⁴ S	4.4
Chlorine	³⁵ Cl	100			³⁷ Cl	32.5
Bromine	⁷⁹ Br	100			⁸¹ Br	98
Iodine	¹²⁷ I	100				

 Isotopes are different types of the atoms that have the same atomic number (*i.e.* same number of protons in the nulceus) but different mass numbers (because there are a different number of neutrons in the nucleas). Hence they are the same element but the isotopes have dfferent masses.

- Mass spectrometers are capable of separating and detecting individual ions even those that differ only by a single atomic mass unit (note in reality mass spectrometers are far more sensitive than that !)
- As a result, molecules containing different isotopes can be distinguished.
- This is most apparent (at this level) when atoms such as bromine or chlorine are present in a molecule because those elements naturally exist with a significant % of the heavier isotope.
- For example, while C has 2 common isotopes, ¹²C and ¹³C, ¹³C represents only about 1% of natural carbon. In contrast, CI has 2 common isotopes, ³⁵CI and ³⁷CI, with about 25% being ³⁷CI.

³⁵CI : ³⁷CI exists naturally in an almost 3:1 ratio, so we observe peaks at "M" (molecules with an atom of ³⁵CI) and "M+2" (molecules an atom of ³⁷CI) are obtained with relative intensity 3:1

[M]⁺ are the molecular ion peaks with an m/z of 64 and 66 corresponding to the M ion $[C_2H_5^{35}Cl]^+$ and the M+2 ion $[C_2H_5^{37}Cl]^+$.

bromoethane has a characteristic [M + 2] peak that has a similar intensity as the [M+] peak . $[M]^+$ are the molecular ion peaks with an m/z of 108 and 110 corresponding to the M ion $[C_2H_5^{79}Br]^+$ and the M+2 ion $[C_2H_5^{81}Br]^+$.

A compound containing two bromines will have a [M + 2] peak twice the size of the $[M^+]$ peak , and a [M + 4] peak

the same size as the $[M^+]$ peak. $[M]^+$ are the molecular ion peaks with an m/z of 200, 202 and 204 corresponding to the M ion $[C_3H_6^{79}Br_2]^+$, the M+2 ion $[C_3H_6^{81}Br]^+$, and the M+4 ion $[C_3H_6^{81}Br2]^+$.

[M]⁺ are the molecular ion peaks with an m/z of 200, 202 and 204 corresponding to the M ion $[C_2H_4^{35}Cl_2]^+$, the M+2 ion $[C_2H_4^{37}Cl]^+$, and the M+4 ion $[C_2H_4^{37}Cl_2]^+$.

Nitrogen rule:

If a compound contains an even number of nitrogen atoms (0, 2, 4, ...), its monoisotopic molecular ion will be detected at an even-numbered nominal m/z value. While, on the other hand, an odd number of nitrogen atoms (1, 3, 5, ...) is indicated by an odd-numbered nominal m/z. This fact arises from the fact that nitrogen has an even mass(14) and an odd valency(3)[Valency of nitrogen is three as nitrogen has 5 electrons in its valence shell].

Number of nitrogens	Examples	M** at m/:
0	methane, CH ₄	16
0	acetone, C ₃ H ₆ O	58
0	chloroform, CHCl3	118
0	[60]fullerene, C ₆₀	720
1	ammonia, NH ₃	17
1	acetonitrile, C2H3N	41
1	pyridine, C5H5N	79
1	N-ethyl-N-methyl-propanamine, C6H15N	101
2	urea, CH ₄ N ₂ O	60
2	pyridazine, C4H4N2	80
3	triazole, C ₂ H ₃ N ₃	69
3	hexamethylphosphoric triamide, HMPTA, C ₆ H ₁₈ N ₃ OP	179

The rule may also be extended for use with fragment ions. This makes a practical tool to distinguish even-electron from odd-electron fragment ions and thus simple bond cleavages from rearrangements.

Applying the nitrogen rule to methane Reactions 6.2–6.6 were suggested as a way to make understand the mass spectrum of methane. They all follow the rule.

$$CH_{4}^{+\bullet} \rightarrow CH_{3}^{+} + H^{\bullet}; m/z \ 16 \rightarrow m/z \ 15$$

$$CH_{4}^{+\bullet} \rightarrow CH_{2}^{+\bullet} + H_{2}; m/z \ 16 \rightarrow m/z \ 14$$

$$CH_{2}^{+\bullet} \rightarrow C^{+\bullet} + H_{2}; m/z \ 14 \rightarrow m/z \ 12$$

$$CH_{2}^{+\bullet} \rightarrow CH^{+} + H^{\bullet}; m/z \ 14 \rightarrow m/z \ 13$$

$$CH_{2}^{+\bullet} \rightarrow CH^{+} + H^{\bullet}; m/z \ 14 \rightarrow m/z \ 13$$

$$CH_{3}^{+} \rightarrow CH^{+} + H_{2}; m/z \ 15 \rightarrow m/z \ 13$$

$$(6.6)$$

